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Fig, 6. Power gain X efficiency product (@B X percent) versus fre-

quency with € as a parameter.
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This link depends on both frequency and external permittivity.
It strongly influences power generation and efficiency of the device,
which are normally less than the ones previously calculated.

Finally, a parameter was defined that is a valid tool in the choice
of &, in order to obtain the best compromise between gain and
efficiency, in a certain frequency range.
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Dispersion of Nonlinear Elements as a Source of
Electromagnetic Shock Structure

R. LANDAUER

Abstract—Electromagnetic shock structure in nonlinear capaci-
tance transmission lines can be resolved, and the energy losses
associated with shock propagation explained, by including a re~
sistance in series with the nonlinear capacitance. This resistance is
inevitably present as the circuit representation of the nonvanishing
relaxation time for the establishment of polarization in the nonlinear
dielectric. Karbowiak and Freeman have dismissed this viewpoint
as ‘‘not tenable!” This is a rebuttal of that statement.
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The study of nonlinear electromagnetic wave propagation and of
electromagnetic shock waves commenced with the pioneering work
of Salinger [17 in 1923. Most modern authors, particularly in the
vast quantum electronics literature, seem unaware of Salinger’s
work. The analysis of electromagnetic shock waves was revived
and given its modern form around 1960 [2]. The field has since
then given rise to a good many additional papers, some of which
are cited in a recent analysis of the detailed structure ot the electro-
magnetic shock [3].

Let us, for convenience, at this point specialize to the case of a
nonlinear dielectric. In that case, different portions of a wavefront
will see different values of the differential capacitance and wili move
with correspondingly different velocities. Thus wavefronts (or tails,
depending on the sign of the nonlinearity) can sharpen, and shock
formation results. Once a shock forms, the equations of motion of the
shock, derived in the same way as in gas dynamics, do not corre-
spond to energy conservation. This point is made in detail in a
recent note by Karbowiak and Freeman [4]. The fact has, however,
been widely understood in the field and is explicitly stated in [2].
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The occurrence of losses can be attributed, following [27], to the
fact that

jf the charge motions are sufficiently rapid, then the D-Erelationship
must break down and show a dispersion. We therefore assume that
in actuality some effect, such as a finite relaxation time for the di-
electric when changing its polarization, will really prevent the wave
front from ever actually achieving infinite slope, but that the relaxa-
tion time is short enough, so that the wave front can become very
steep. The motion of such a steep wave front can be treated without
taking into account the detailed behavior of the relaxation (or other
dispersion mechanism). A treatment of the shock front, calculating
its thickness as a function of the dispersion behavior, can be given
[5] but is not relevant to our present purposes.”

We have revised the original text by replacing the original word
“ferroelectric”’ by ‘‘dielectric,”” and have changed the reference
numbering.

A nonlinear dielectric cannot be a vacuum, it must contain polar-
izable entities, with moving charges. These moving charges must see
some damping. This makes the dielectric lossy. In the simplest cases
this can be represented by a series resistance, giving the capacitance
the correct relaxation time for charge displacement.

Karbowiak and Freeman [4] refer to this explanation as “not
tenable.” Their reason: “When the resistive elements are sufficiently
small, the rate of energy loss in the shock region is much too slow to
account for the loss implied.”” It is easily shown that this statement
about losses is incorrect, and that in the limit of small resistances,
the loss is independent of the value of the resistance. Rather than
take up the space here, for this straightforward integration, the
following arguments are put forth.

1) The reader is referred to [37], and a number of its references
in turn. In several of these, detailed shock structure is discussed.
The shock structure is resolved, into a continuous transition with
bounded slope, by any resistance in series with the nonlinear dielec-
tric, no matter how small that resistance is. Since the equations used
to derive this are consistent with conservation of energy, any energy
lost in the shock propagation must be dissipated in the resistances.

2) An elementary circuit analogy is given whick involves all the

same physical points. Consider the discharge of a capacitor through a’

conduetor. All of the energy originally in the capacitor is dissipated
in the resistance of the conductor, no matter how small that resistance
is. Consider the expression for the energy loss, [ 2Rdt, as we let R
become small. The length of time over which we have appreciable
losses then becomes similarly small. On the other hand, * goes up,
during this time, as 1/R% As a result, the integral remains constant.

What if in 2) we really insist on a strictly lossless conductor?
Then, of course, the inductance of the current flow path cannot be
neglected. The capacitive energy becomes inductive, and we establish
oscillations.

What happens in our shock problem if we similarly insist on a
polarizable dielectric, which (in contradiction to the dispersion rela-
tions) is genuinely lossless? Then the inertia of the charges which
are displaced to establish the polarization cannot be neglected. Then,
as was shown in [57], the shock does not have a simple monotonic
transition, but instead oscillations are left in its wake.

Karbowiak and Freeman [47, after criticizing this author for
invoking a lossy dieleciric, come to the conclusion that, “It is im-
possible to realize a continuous loss-free transmission medium which
would be characterized by (a) non-linear . . . C(¥).” Since nonlinear
dielectrics certainly exist, the conclusion must be that they are lossy.
But is that not the very point they found objectionable in my work?
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Rebuttal of “Dispersion of Nonlinear Elements as a
Source of Electromagnetic Shock Structure”

A. E. KARBOWIAK anp R. H. FREEMAN

Abstract—It is pointed out that if the classical method of weak
solution is to be used for the solution of the problem, then it is neces-
sary to include a resistive element of a sufficient magnitude. This
also is a feature of Landauer’s work.! The solution so obtained is
accurate under well-defined conditions, and among others, it can be
shown that energy losses associated with the shock front can be
accounted for by that resistance. However, it is inconsequential o
assume that as the value of the resistive element is reduced to zero,
the energy balance continues to hold. This requires a separate proof.

An exact analysis based on a series of experimental results and
computer modeling shows that the classical discrepancy can be ac-
counted for in a different way.

We do noi think there is anything objectionable in Landauer’s
work,! but the reader should be aware that some of the observations
and conclusions reached in Landauer’s work are inconsequential
and misleading.

At the outset, it should be clarified that a waveguiding structure
can be dispersive for two distinct reasons.

1) The structure is iterative, that is, it consists of lumped param-
eter elements.

2) Tt is distributed, but with R, L, G, and € parameters such that
the ratio of R/L = G/C.

In the first case the physical system can be correctly modeled by a
difference equation (DE). This case, for nonlinear elements, is the
subject of a separate study [17], while the other case was the subject
of a recent publication (footnote 1, [47]) and is also the subject of
the present discussion.

Case 2) can be modeled by partial differential equations (PDE)
derivable from Maxwell’s equations. Implicit in such modeling are
the constitutive relations desecribing the equivalent line parameters
(R, L, G, and C). However, energy conservation need not be obeyed.
This was first commented on by Rayleigh in 1910 [27, who evidently
was also puzzled by the anomaly when he said, in relation to a loss-
free system, “I fail to understand how a loss of energy can be ad-
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